

 LegUp provides an integrated development environment tool that

enables engineers to compile C/C++ software into Verilog targeting a

Microchip FPGA device, improving productivity and time-to-market.

www.legupcomputing.com

legup@microchip.com

Benefits of High-Level Synthesis

for FPGA Design

White Paper

July 2020

 LegUp provides an integrated development environment tool that

enables engineers to compile C/C++ software into Verilog targeting a

Microchip FPGA device, improving productivity and time-to-market.

www.legupcomputing.com

legup@microchip.com

INTRODUCTION

As FPGA designs continue to get larger and more complex, engineers need to improve

their productivity to meet tight design schedules. This white paper will explain how engineers

can speed up their FPGA development by using the LegUp high-level synthesis tool to generate

their hardware blocks from C++ software.

In the high-level synthesis design flow, the engineer implements their design in C++

software and verifies the functionality with software tests. Next, they specify a top-level C++

function, which LegUp will compile into an equivalent Verilog hardware module. LegUp can run

co-simulation to verify the hardware module behaviour matches the software. LegUp uses

Libero SoC to generate the post-layout timing and resource reports for the Verilog module.

Finally, LegUp generates a SmartDesign IP component that the engineer can instantiate into

their SmartDesign system in Libero SoC. Figure 1 shows the high-level synthesis FPGA design

flow for targeting a Microchip PolarFire FPGA.

 Figure 1: High-level Synthesis FPGA Design Flow Targeting a PolarFire FPGA

 LegUp provides an integrated development environment tool that

enables engineers to compile C/C++ software into Verilog targeting a

Microchip FPGA device, improving productivity and time-to-market.

www.legupcomputing.com

legup@microchip.com

FPGA DESIGN: RTL VS HLS

For readers unfamiliar to high-level synthesis, we compare the traditional FPGA design

flow using a register transfer level (RTL) language like Verilog/VHDL to the newer high-level

synthesis design approach using C++ software.

Traditional RTL design flow for FPGAs

1. RTL design: Hardware engineer decides the hardware microarchitecture and manually

writes the hardware block in RTL language like Verilog/VHDL.

2. Optimization & Timing closure: Hardware engineer iterates on design to meet the clock

period and area constraints by adding pipeline registers and restructuring the RTL.

3. Verification: Hardware engineer writes a testbench to verify the RTL block in simulation.

Acceptance testing compares functionality to the original software model.

As shown in Figure 2, using high-level synthesis to design FPGA hardware blocks with C++

software code can save engineers 2-5X design time compared to traditional RTL design.

 Figure 2: FPGA design flow using RTL vs. HLS

 LegUp provides an integrated development environment tool that

enables engineers to compile C/C++ software into Verilog targeting a

Microchip FPGA device, improving productivity and time-to-market.

www.legupcomputing.com

legup@microchip.com

High-Level Synthesis design flow for FPGAs

1. HLS Software Design: engineer writes a software model of the design in C++ software.

Software is tested to verify desired functionality. The engineer generates a hardware

block from the C++ software using high-level synthesis. Engineer rewrites the C++ in HLS

style as necessary, for example using FIFO types for dataflow computation, to get the

desired throughput.

2. Optimization & timing closure: engineer adds HLS constraints for the desired clock

period. Engineer tunes the HLS settings, for example to reduce area by sharing hardware

operators. Engineer runs the Libero SoC design suite to verify area/timing.

3. Verification: The generated circuit will be correct by construction. Engineer can use co-

simulation to verify the generated RTL block in Modelsim simulation. Co-simulation will

automatically create a testbench for the tests from the original software model.

HLS PRODUCTIVITY GAIN

Engineers developing FPGA hardware in C++ using high-level synthesis design tools

reduce their design effort significantly compared to engineers writing hardware in RTL. Writing

software code is much easier for engineers than writing hardware in RTL because software code

is more concise, with 5-10X less lines of C++ required than RTL, as shown in Figure 3. Software

code is also much easier to read and understand for future improvements or maintenance

compared to RTL. Software conciseness and readability mean less bugs in your FPGA design. As

shown in Figure 2, engineers will see a 2-5X reduction in FPGA design time by using HLS. Better

designer productivity leads to faster time-to-market.

C++ software code describes an

algorithm, which is at a much higher level

of abstraction than hardware description

languages. For example, in C++ code the

programmer does not need to specify any

hardware timing constructs like clock

cycles. In contrast, a hardware engineer

writing RTL must specify cycle-by-cycle

hardware behavior using finite state

machines and other control logic. If any

control logic is off by one cycle, then

circuit functionality will break. High-level

synthesis also supports C++ data types to
Figure 3: Lines of C code versus lines of RTL code [1]

https://appserver.eie.polyu.edu.hk/ITS/docs/w4/its-HLS.pdf

 LegUp provides an integrated development environment tool that

enables engineers to compile C/C++ software into Verilog targeting a

Microchip FPGA device, improving productivity and time-to-market.

www.legupcomputing.com

legup@microchip.com

represent floating or fixed-point computation. These data types are not natively supported in

Verilog/VHDL languages therefore the engineer must handle these operations manually.

High-level synthesis also offers much more flexible hardware module parameterization

compared to Verilog/VHDL. In a software description of the design, C++ template parameters

offer more fine-grained control versus simple RTL parameters. Furthermore, HLS user-provided

constraints can fine-tune the generated hardware microarchitecture for different latency,

timing, and area design constraints. Meanwhile, for an RTL design the engineer must manually

add pipeline registers to the data path to meet different timing constraints. Last-minute

pipeline changes are painful and difficult to parameterize in RTL.

PORT EXISTING SOFTWARE TO FPGA

High-level synthesis allows engineers to reuse a pre-existing software implementation of

their algorithm and port this software to an FPGA. In many cases, this existing software

implementation has been verified and tested extensively. For an engineer to manually re-

implement the software design in Verilog/VHDL could introduce subtle errors that can be

tedious to catch and time consuming to verify. High-level synthesis greatly simplifies this

process and avoids manual reimplementation saving design time and engineering resources.

For example, a real-time control application may include software or firmware running

on a microcontroller that can no longer meet the required response time. The solution is to

migrate the software to an FPGA which offers deterministic latency. High-level synthesis allows

the engineer to automatically generate Verilog/VHDL from the existing C++ software. See our

customer case-study white paper: “Migrating Motor Controller C++ Software from a

Microcontroller to a PolarFire FPGA with LegUp High-Level Synthesis”.

https://www.microsemi.com/document-portal/doc_download/1245534-migrating-motor-controller-c-software-to-a-polarfire-fpga-with-legup-hls-whitepaper

 LegUp provides an integrated development environment tool that

enables engineers to compile C/C++ software into Verilog targeting a

Microchip FPGA device, improving productivity and time-to-market.

www.legupcomputing.com

legup@microchip.com

FASTER VERIFICATION & LESS BUGS

For engineers, verifying the functional correctness of a hardware design written in RTL is

usually the most time-consuming part of designing for an FPGA. The engineer must manually

write testbenches in RTL to simulate their design under various input/output test stimulus. In

contrast, an engineer designing hardware in C++ with high-level synthesis can significantly

reduce their time spent on verification. When using high-level synthesis, the engineer can write

tests in software to verify their design, since the circuit generated from HLS will be correct by

construction. Writing tests in C++ software is simpler than writing hardware testbenches in RTL,

which usually leads to writing more comprehensive tests, increasing test coverage.

LegUp HLS supports automatic co-simulation of the generated hardware with Modelsim,

by re-using the C++ software tests. During co-simulation, the LegUp HLS tool runs the software

program with instrumentation added around the top-level C++ function to collect golden

inputs/outputs for each function argument. Then LegUp automatically generates a hardware

testbench that reads the golden inputs/outputs from test vector files. The testbench verifies

that the generated hardware module behaviour matches the software model. Engineers can

also write their own custom testbench with a more restricted set of tests to be run on the HLS-

generated RTL as a sanity check. Much less RTL simulation is necessary with HLS design.

RTL simulation times can become long and impractical for larger FPGA designs as the

number of tests increase. High-level synthesis allows for software-based testing and verification

which has 100-1000X faster runtime than RTL simulation. Faster software-based verification

runtimes mean that engineers using HLS can still verify hardware after last-minute design

changes if requirements change late in the design process.

DESIGN SPACE EXPLORATION

Design space exploration is the process of making hardware microarchitecture design

trade-offs within a set of constraints on FPGA clock frequency, throughput, latency, and area.

An RTL engineer will usually decide on a hardware microarchitecture early in the design

process. After the RTL is written, an engineer will typically avoid making microarchitecture

changes, such as adding pipeline stages, because RTL redesign is a time-consuming process.

In contrast, high-level synthesis simplifies design space exploration and allows

continuous refinement of the hardware microarchitecture throughout the design process. For

example, the HLS tool automatically inserts pipeline registers based on the HLS target clock

period constraint. The engineer can easily modify the HLS target clock period to achieve

different performance/area targets without manual redesign. HLS typically runs in a few

 LegUp provides an integrated development environment tool that

enables engineers to compile C/C++ software into Verilog targeting a

Microchip FPGA device, improving productivity and time-to-market.

www.legupcomputing.com

legup@microchip.com

minutes, so the designer can quickly get feedback on resource and throughput estimates

without waiting for a time-consuming FPGA synthesis run.

LegUp HLS offers a rich set of user-constraints and pragmas for the engineer to specify

their desired hardware microarchitecture based on the software description. For example,

loops can be pipelined to improve performance, or inner loops can be unrolled. Functions with

FIFO dataflow streaming inputs/outputs can be pipelined. C++ arrays can be partitioned into

registers or RAMs to achieve better memory bandwidth and performance. High-level synthesis

also supports sharing larger hardware operations such as floating-point cores. HLS constraints

give the designer the ability to easily perform more design space exploration, which can lead to

better trade-offs between performance and area for their FPGA designs.

FPGA DEVICE PORTABILITY

A verified hardware IP block can be reused for many years. Therefore, future proofing is

important if the hardware block could later target another FPGA device family. RTL designs

have a specific microarchitecture targeting one FPGA family. Therefore, RTL redesign will be

required if the timing constraints are not met when porting. RTL designs may also use primitive

blocks specific to the FPGA family, which will need to be rewritten.

High-level synthesis automatically adds pipelining stages to your hardware depending

on the target FPGA device and clock period constraints. HLS settings can easily be changed to

re-generate a hardware block targeting a new FPGA family while still meeting the timing

constraints. Portability is simplified because there are no FPGA family-specific C++ design

constructs.

CONCLUSION

In conclusion, FPGA design with C++ using high-level

synthesis can offer 2-5X better design productivity compared to

writing in RTL. The resulting C++ code is 5-10X shorter than an

equivalent RTL design and C++ is expressed at a higher level of

abstraction. This results in less bugs and easier readability. HLS

software-based verification and testing saves significant design

effort compared to RTL verification. HLS also enables easier design

space exploration and FPGA device portability.

Key Takeaways

• LegUp HLS simplifies FPGA design

by allowing you to program the

FPGA using C/C++ software

• 2-5X better design productivity

• Higher abstraction level means

less code and less bugs

• Faster verification and testing

• Design space exploration

• FPGA device portability

