

LegUp provides an integrated development environment tool that

enables engineers to compile C/C++ software into Verilog targeting a

Microchip FPGA device, improving productivity and time-to-market.

www.legupcomputing.com

legup@microchip.com

Migrating Motor Controller C++ Software

from a Microcontroller to a PolarFire FPGA

with LegUp High-Level Synthesis

White Paper

June 2020

2

LegUp provides an integrated development environment tool that

enables engineers to compile C/C++ software into Verilog targeting a

Microchip FPGA device, improving productivity and time-to-market.

www.legupcomputing.com

legup@microchip.com

INTRODUCTION

This white paper is aimed at engineers designing embedded motor

controllers for Industrial applications. Specifically, industrial control

applications that involve the precise control and coordination of several

motors using a software-based motor controller. Embedded motor

controller software typically targets an ARM Cortex-M microcontroller

running a real-time operating system. However, certain industrial control

applications require higher motor performance and precision than what is

possible to achieve using a software-based motor controller.

In closed-loop motor controllers, low latency and low jitter is critical

because the motor current needs to be changed at regular intervals based

on real-time sensor feedback from motor encoders. Software running on a

microcontroller, even running a real-time operating system, may struggle

to achieve low latencies (sub 10 microseconds) due to jitter, interrupt

latency, and time taken to compute. Instead, we propose to migrate the

software-based motor controller to a hardware-based motor controller

implemented on a Microsemi PolarFire FPGA. An FPGA implementation

offers deterministic latency and jitter, which will enable your industrial

design to achieve the best possible motor performance and precision.

Designing a new hardware-based motor controller from scratch for

an FPGA, using Verilog/VHDL, can be time consuming. Typically, an

engineer already has an existing motor controller designed in C/C++ that

works on a microcontroller. In this situation, the ideal solution is to

automatically convert the existing C++ software code into an equivalent

hardware implementation targeting a Microsemi PolarFire FPGA. This is

made easy by the LegUp High-Level Synthesis (HLS) tool and integrated

development environment, which can compile C++ software into a

hardware block targeting a PolarFire FPGA.

By migrating from a microcontroller to an FPGA, the motor

controller will have a deterministic latency, with a fixed number of clock

cycles between receiving motor encoder feedback and driving current to

the motors. In this whitepaper, we give a case-study on how an engineer

migrated an existing C++ motor control application working on a

microcontroller to a Microsemi PolarFire FPGA using the LegUp HLS tool.

LegUp HLS allowed us

to easily port our

existing C++ motor

controller code to a

Microsemi FPGA with

minimal modifications.

The generated

hardware core met our

latency, Fmax, and

area requirements. The

LegUp team has also

provided us with great

support!

Koji Yoneda

CEO,

Sodick America

3

LegUp provides an integrated development environment tool that

enables engineers to compile C/C++ software into Verilog targeting a

Microchip FPGA device, improving productivity and time-to-market.

www.legupcomputing.com

legup@microchip.com

MOTOR CONTROLLER SYSTEM OVERVIEW

The target system for the motor controller is

shown in Figure 1 and consists of two boards. The

microcontroller board has an ARM microcontroller

with an attached DDR memory, which is connected

over PCIe with the FPGA board. The FPGA board has a

PolarFire FPGA (MPF300TS_ES-1FCG1152E) connected

to 8 motors and has a DDR memory holding data

needed by the motor control algorithm.

In Figure 2, we show how the coarse-grained

motor positions are calculated by the microcontroller

every 100 microseconds (labeled A, B, C). Every 100

microseconds, the ARM microcontroller sends the

updated position of the motor over the PCIe interface,

updates the FPGA motor controller control status

registers, and starts the fine-grained motor

controller running on the FPGA.

On the FPGA, the LegUp-generated motor controller hardware core is controlled via an

AXI slave interface. The fine-grained motor positions are calculated by the FPGA every 10

microseconds or less (labeled 1, 2, 3, 4 in

Figure 2) using input feedback from the

motor encoder sensors. The FPGA outputs

the motor currents every 10 microseconds

to adjust the motor positions.

The FPGA motor algorithm in C++

consists of two loops iterating over 8

motors: the path generator loop and the

motor output current loop. There is also an

initial stage to perform a DMA request for

the compensation data from DDR memory

using an AXI master interface. LegUp

synthesizes the C++ code into a hardware

core, including the AXI slave and master

interfaces.

8 Motors

FPGA Board

DDR LegUp-generated
Motor Controller

PolarFire FPGA

PCIe (Every 100μs)

 ARM Microcontroller

Microcontroller Board

DDR

AXI4 Slave

AXI4
Master

Motor Currents Encoder Sensors

Figure 1: Motor Controller System Diagram

A

B

100μs 100μs

C

<10μs

1 2 3 4

1
2 3 4

<10μs

Figure 2: Coarse and Fine-grained Motor Path
Calculation

4

LegUp provides an integrated development environment tool that

enables engineers to compile C/C++ software into Verilog targeting a

Microchip FPGA device, improving productivity and time-to-market.

www.legupcomputing.com

legup@microchip.com

LEGUP HLS DESIGN METHODOLOGY

An engineer can use the LegUp HLS eclipse-based IDE to implement their motor

controller software in C++. First, the engineer verifies their application’s functionality by

compiling and running the software on their local computer with a C++ software testbench.

Next, the engineer specifies circuit Fmax constraints, and uses LegUp HLS to automatically

convert the C++ software into an equivalent Verilog module in a few minutes.

For hardware verification, LegUp HLS supports an automated cycle-accurate co-

simulation flow using Modelsim. The co-simulation flow will run the C++ software testbench to

gather input test vectors and expected outputs, then will simulate the generated Verilog

module with the input test vectors, while verifying the outputs. The co-simulation flow also

allows the user to accurately measure the cycle latency of the motor controller and includes

support for AXI interfaces. Finally, the user can click a button in the LegUp HLS IDE to synthesize

the design using Microsemi Libero, generate an FPGA bitstream and report the FMax and area.

Figure 3 shows a block diagram of the LegUp-generated motor controller hardware

block. The input to the controller is the motor position from the encoder sensor (encoder_pos).

For each of the 8 motors there are two current outputs (current_iq, and current_id), which are

represented in the C++ as arrays. The motor controller includes an AXI4 slave interface, to allow

the ARM microcontroller to burst write data to the control status registers in memory-mapped

slave memory. The memory-mapped slave memory is represented in C++ as a global struct. The

motor controller also contains an AXI4 master interface to burst read from DDR off-chip

memory. The core motor controller algorithm consists of two loops that iterate over the 8

motors: the path generator loop and the motor output current loop. We apply the LegUp HLS

loop pipelining user-constraint so that the loops can be pipelined with overlapping execution of

iterations for better latency.

AXI4 Slave

Write Block

AXI4 Slave

Read Block

Memory-mapped

slave memory

set [MAX_MOTOR]

dat [MAX_MOTOR]

pgd [MAX_MOTOR]

mtg_set

Path Generator

Loop

Motor Output

Current Loop
AR

out_current_iq out_current_id

R

W
AW

B

AR

R

W

AW

B

in_encoder_pos

AXI4

Slave

(64-bit)

AXI4

Master

Figure 3: LegUp-generated Motor Controller FPGA Hardware Block

5

LegUp provides an integrated development environment tool that

enables engineers to compile C/C++ software into Verilog targeting a

Microchip FPGA device, improving productivity and time-to-market.

www.legupcomputing.com

legup@microchip.com

LEGUP HLS HARDWARE INTERFACES

In LegUp HLS, the user can specify the top-level

hardware interfaces using function arguments with

standard C++ types and LegUp-specific C++ types for AXI

interfaces. These types will be compiled into the

corresponding hardware interface in Verilog.

Figure 4 shows the motor controller C++ top-level

level interfaces for the motor controller hardware block in

C++. For each motor, the block has two 16-bit outputs (out_current_iq and out_current_id) and

a 32-bit input (in_encoder_pos). These inputs and outputs are represented as an array in C++,

which is split into individual ports when generating the Verilog module. The AXI master

interface is specified as a reference to the LegUp-provided “AxiInterface” C++ class, with

template arguments specifying an address width of 32 bits, data width of 64 bits, and byte

enable of 8 bits. This can be used to DMA data from DDR memory using burst requests.

 The AXI slave memory-mapped memory is

represented in C++ as a global struct as shown in

Figure 5. LegUp has a user-constraint to specify

that a struct should be accessible from an AXI

slave interface. LegUp will then automatically

generate the 64-bit AXI slave interface ports and

assign addresses to the struct elements. These

memory-mapped addresses can be found in a

generated header file.

Figure 6 shows the Verilog module interface generated by LegUp HLS for the 8 motor

inputs/outputs. Input ports are labeled with “_readdata” and output ports are labeled with

“_writedata”. Whether a port is an input or output is inferred automatically by LegUp based on

how the C++ array function arguments are accessed in the top-level function. Arrays that are

only read from become input ports. In Figure 7, we show the generated Verilog for the AXI

master and slave interfaces. These are generated automatically from the C++ software and the

user-specified constraints.

void __attribute__((noinline)) MotorControl

(

 uint32 in_encoder_pos[MOTORS],

 int16 out_current_iq[MOTORS],

 int16 out_current_id[MOTORS],

 AxiInterface<uint32, uint64, uint8> &master

) {

Figure 4: C++ Top-Level for Motor Controller Block

struct SlaveMemoryT {

 HardwareMtmGlobalSettings mtg_set;

 HardwareMtmGlobalData mtg_dat;

 HardwareMotorSettings set[MOTORS];

 HardwareMtmCommonData dat[MOTORS];

 PathGenData pgd[MOTORS];

 ...

}

Figure 5: AXI4 Slave Memory-Mapped C++ Struct

output reg [31:0] master_AW_AWADDR_data_to_sink;

input master_AW_ready_from_sink;

output reg master_AW_valid_to_sink;

output reg [7:0] master_AW_AWLEN_data_to_sink;

output reg [63:0] master_W_WDATA_data_to_sink;

input master_W_ready_from_sink;

...

input [31:0] axi_s_AW_AWADDR_data_from_source;

output reg axi_s_AW_ready_to_source;

input axi_s_AW_valid_from_source;

input [7:0] axi_s_AW_AWLEN_data_from_source;

input [63:0] axi_s_W_WDATA_data_from_source;

output reg axi_s_W_ready_to_source;

Figure 6: LegUp-generated Verilog for Motor
Inputs/Outputs

input [31:0] in_enc_pos_a0_readdata;

input [31:0] in_enc_pos_a1_readdata;

...

input [31:0] in_enc_pos_a7_readdata;

output reg [15:0] out_current_iq_a0_writedata;

output reg [15:0] out_current_id_a0_writedata;

output reg [15:0] out_current_iq_a1_writedata;

output reg [15:0] out_current_id_a1_writedata;

...

output reg [15:0] out_current_iq_a7_writedata;

output reg [15:0] out_current_id_a7_writedata;

Figure 7: LegUp-generated Verilog for AXI4 Master/Slave
Interface

6

LegUp provides an integrated development environment tool that

enables engineers to compile C/C++ software into Verilog targeting a

Microchip FPGA device, improving productivity and time-to-market.

www.legupcomputing.com

legup@microchip.com

FLOATING-POINT AND FIXED-POINT SUPPORT

The motor controller C++ software algorithm used standard floating-point operations.

LegUp HLS includes support for floating-point IP cores that are optimized for the PolarFire FPGA

DSP architecture both in terms of latency and FMax. LegUp also supports constraining the

number of floating-point hardware units used for each operation type. These floating-point

units will be shared among the required floating-point operations, which saves FPGA area but

can reduce performance.

Figure 8 shows an example of the C++ template arguments for the LegUp floating-point

multiplier core. By default, the floating-point cores will be configured automatically by LegUp

based on the C++ floating point types. But if the user wishes to specify custom mantissa and

exponent widths, for example in an AI application, they can directly instantiate these floating-

point classes in their C++.

LegUp HLS also provides an easy way for engineers to specify fixed-point operations

using the C++ fixed-point library (ap_fixed). LegUp HLS can support all major C++ operations in

fixed-point. The fixed-point library allows an engineer to start with a floating-point

implementation of the motor controller algorithm to match the microcontroller

implementation, then migrate to fixed-point math if required to reduce the area on the FPGA.

Fixed-point hardware units will consume significantly less area than floating point hardware

units, while offering higher performance but more upfront design effort. Table 1 shows some

examples of the LegUp ap_fixed types with their corresponding ranges.

Type Quantum Range

ap_fixpt<8, 4> 0.0625 -8 to 7.9375

ap_ufixpt<4, 12> 256 0 to 3840

ap_ufixpt<4, -2> 0.015625 0 to 0.234375

User-specified template arguments:

Target FPGA arch. & desired precision

Target clock period Generated IP

Core in RTL

LegUp Floating-point Library:

C++ template functions

implementing the FP arithmetic

template <

 // Configure floating-point format:

 unsigned M_W, // Mantissa width

 unsigned E_W, // Exponent width

 class FPType = ap_fp<M_W, E_W>,

 // Configure DSP multiplier width: A x B

 unsigned MULT_W_A, // Input A width

 unsigned MULT_W_B, // Input B width

 >

FPType fmult(FPType A, FPType B) { ... }

Figure 8: LegUp floating-point library. Example of floating-point multiplier template arguments

Table 1: Example LegUp fixed-point types and ranges

7

LegUp provides an integrated development environment tool that

enables engineers to compile C/C++ software into Verilog targeting a

Microchip FPGA device, improving productivity and time-to-market.

www.legupcomputing.com

legup@microchip.com

FPGA PERFORMANCE

The initial implementation of the motor controller C++ was using a push button

approach to LegUp HLS. Next, the engineer spent a few weeks performing design space

exploration using LegUp HLS user-constraints and tuning the Microsemi Libero synthesis

options.

Table 2 shows the hardware quality of results for the motor controller hardware

targeting a PolarFire FPGA (MPF300TS_ES-1FCG1152E). The cycle latency was almost halved

and the Fmax was improved to meet the 200MHz target clock frequency. The final deterministic

latency for the motor controller was approximately 2μs. The area of the motor controller was

also reduced to fit inside the 300K LUT PolarFire FPGA.

Table 2: Motor Controller FPGA hardware quality of results

We performed experiments comparing the original C++ motor controller to the

improved FPGA version. We found that the FPGA-based motor controller had a 2.5-6X speedup

in terms of latency compared to the ARM microcontroller, depending on the jitter of the

microcontroller and real-time operating system.

CONCLUSION

In conclusion, LegUp HLS can offer an easy path

to migrate existing C/C++ code targeting a micro-

controller to a Microsemi PolarFire FPGA. For industrial

control applications, an FPGA can offer motor

controllers with significantly better deterministic

latency and jitter compared to a microcontroller.

Cycle

Latency

Clock
Frequency

Deterministic
Latency

LUT
Count

Initial 800 150 MHz 5.33 μs 320K

Optimized 450 210 MHz 2.14 μs 200K

Key Takeaways

• LegUp HLS simplifies FPGA design

by allowing you to program the

FPGA using C/C++ software

• C/C++ code for microcontrollers

can be migrated to a Microsemi

FPGA using LegUp HLS

• Microsemi FPGAs offer 2.5-6X

better latency/jitter for motor

control vs. a microcontroller

